ナンバーリンク
スリザーリンク問題集へ
スリザーリンク問題集
パズル美術館問題集へ
パズル美術館問題集
アイスバーン問題集へ
アイスバーン問題集
ぬりかべ問題集へ
ぬりかべ問題集


ナンバーリンク問題集

 
ナンバーリンクの問題集です。内容、ルールの分からない方はナンバーリンクトップページをご覧ください。
最初のうちは、サイズも小さく比較的簡単な問題が多いです。

ウォーミングアップのつもりで解いてください。
徐々に、大きいサイズの問題、難しい問題になります。難しい問題も頑張って解いてください。

問題の番号は、次のようになっています。[0001a/10X10-1下段に(171022)]
最初の「0001」が全パズルの通し番号、次の「a」が難易度、次の「10X10」がパズルの大きさ、
次の[1]がその大きさの番号、そして下段の()内は問題登録日の日付です。
修正があった場合は、その後ろ/以後に修正日を記入します。

難易度は、a:簡単、b:まあ簡単、c:普通、d:やや難しい、e:難しい、f:超難、g:激難となっています。
難易度は、私が解いてみた感触で付けています。

問題に関する注は最下部にあります。そちらも参考にお読みください。

(*Firefoxは、52以降 Chromeは、42以降 Safariは、12以降 Java をサポートしなくなりました。カンペンをお使いの方は、それ以外のブラウザをお使いください。)

 最新問題28~30問  過去問リンク →過去問1
0234c/10x10-78
(190822)
0233c/15x15-50
(190820)
0232e/20x20-8
(190817)
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
0231d/10x15-67
(190815)
0230d/15x20-31
(190812)
0229c/10x10-77
(190810)
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
0228d/15x15-49
(190807)
0227e/20x20-7
(190805/0806)
0226e/10x15-66
(190802)
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
0225d/15x20-30
(190731)
0224c/10x10-76
(190728)
0223d/15x15-48
(190726)
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
0222e/20x20-6
(190723)
0221d/10x15-65
(190721)
0220d/15x20-29
(190718)
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
0219c/10x10-75
(190716)
0218d/15x15-47
(190713)
0217d/20x20-5
(190711)
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
0216c/10x15-64
(190708)
0215e/15x20-28
(190706)
0214d/10x10-74
(190703/0711)
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
0213e/15x15-46
(190701)
0212e/20x20-4
(190628)
0211d/10x15-63
(190626)
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
0210d/15x20-27
(190623)
0209c/10x10-73
(190621)
0208d/15x15-45
(190618)
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
0207e/20x20-3
(190616)
0206d/10x15-62
(190613)
0205e/15x20-26
(190611)
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
最新問題28~30問   過去問リンク


注)

「ナンバーリンク」は昔からあった同じものを線でつなぐというパズルを、枠の中に納めることにより、
線の通し方(線の通る本数)をはっきりとさせたパズルと言えます。
ニコリでは、読者の投稿によりパズル誌を発行していますが、パズルの投稿に際しては、制作上に
ある程度の規定を設けているようですが、「ナンバーリンク」に関しては規定はないようです。

「ナンバーリンク」の回答では、ルール上「全てのマスに線が通る」ことは明記されていないようですが、
作品は、「全てのマスに線が通る」ように作っているようです。
ですから、正解の場合は「全てのマスに線が通る」事になりますが、もし全ての番号がつながっても
空白マスが残った場合は「別解」(短絡解)があったわけで、作者のミスと言う事になります。

そんなわけで、私の作成する問題も「全てのマスに線が通る」ように作っていますが、
もし、「別解」(短絡解)を見つけられた方は、お知らせ願えると助かります。