ナンバーリンク
スリザーリンク問題集へ
スリザーリンク問題集
パズル美術館問題集へ
パズル美術館問題集
アイスバーン問題集へ
アイスバーン問題集
ぬりかべ問題集へ
ぬりかべ問題集


ナンバーリンク問題集

 
ナンバーリンクの問題集です。内容、ルールの分からない方はナンバーリンクトップページをご覧ください。
最初のうちは、サイズも小さく比較的簡単な問題が多いです。

ウォーミングアップのつもりで解いてください。
徐々に、大きいサイズの問題、難しい問題になります。難しい問題も頑張って解いてください。

問題の番号は、次のようになっています。[0001a/10X10-1下段に(171022)]
最初の「0001」が全パズルの通し番号、次の「a」が難易度、次の「10X10」がパズルの大きさ、
次の[1]がその大きさの番号、そして下段の()内は問題登録日の日付です。
修正があった場合は、その後ろ/以後に修正日を記入します。

難易度は、a:簡単、b:まあ簡単、c:普通、d:やや難しい、e:難しい、f:超難、g:激難となっています。
難易度は、私が解いてみた感触で付けています。

問題に関する注は最下部にあります。そちらも参考にお読みください。

(*Firefoxは、52以降 Chromeは、42以降 Java をサポートしなくなりました。カンペンをお使いの方は、それ以外のブラウザをお使いください。)

 最新問題28~30問  過去問リンク →過去問1
0071d/15x15-9
(180624)
0070d-10x15/180621
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
0069c-10x10/180619 0068d-10x15/180617 0067c-10x10/180614
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
0066d-10x15/180612 0065d-10x10/180608 0064d-10x15/180606
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
0063d-10x10/180602 0062e-10x15/180531 0061c-10x10/180527
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
0060d-10x15/180525 0059c-10x10/180521 0058c-10x15/180519
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
0057d-10x10/180517 0056f-15x15/180310 0055e-10x15/180306
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
0054d-10x10/180304 0053d-15x15/180228 0052d-10x15/180225
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
0051d-10x10/180223 0050e-15x15/180221 0049d-10x15/180218
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
0048c-10x10/180216 0047e-15x15/180214 0046d-10x15/180210
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
0045c-10x10/180207 0044f-15x15/180205 0043d-10x15/180203
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
ぱずぷれで解く
カンペンで解く
最新問題28~30問   過去問リンク


注)

「ナンバーリンク」は昔からあった同じものを線でつなぐというパズルを、枠の中に納めることにより、
線の通し方(線の通る本数)をはっきりとさせたパズルと言えます。
ニコリでは、読者の投稿によりパズル誌を発行していますが、パズルの投稿に際しては、制作上に
ある程度の規定を設けているようですが、「ナンバーリンク」に関しては規定はないようです。

「ナンバーリンク」の回答では、ルール上「全てのマスに線が通る」ことは明記されていないようですが、
作品は、「全てのマスに線が通る」ように作っているようです。
ですから、正解の場合は「全てのマスに線が通る」事になりますが、もし全ての番号がつながっても
空白マスが残った場合は「別解」(短絡解)があったわけで、作者のミスと言う事になります。

そんなわけで、私の作成する問題も「全てのマスに線が通る」ように作っていますが、
もし、「別解」(短絡解)を見つけられた方は、お知らせ願えると助かります。